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Although each piece of evidence is circumstantial, we feel that 
the weight of the data argue against 2b as a precursor to 3b. 

Since triplet oxygen is a "textbook example" of a conven­
tional diradical, it is perhaps surprising that this species be­
comes involved in "zwitterionic" reactions with ketenes.12 

However, the problem of a D —* Z conversion and the problem 
of triplet-singlet intersystem crossing are probably strongly 
coupled in the systems studied here. Indeed, a 3D -» Z con­
version10 was recently proposed to accommodate the apparent 
catalytic conversion of 3C>2 to '02 by strained acetylenes. The 
same mechanism for the 3D —*• Z conversion can be put forth 
(Figure 1) to explain the zwitterionic reactions of ketenes; i.e., 
an interaction of the C=C bond of a ketene with one atom of 
triplet oxygen induces a strong spin-orbit interaction of the 
distal oxygen atom and facilitates collapse to Z. 
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Ozonation of Ketenes. Nature of Intermediates 

Sir: 

In 1970 Wheland and Bartlett reported that ozonation of 
diphenylketene and di-terf-butylketene at —78 0C yielded the 
related a-lactones which underwent rapid polymerization to 
the polyesters.1 In an accompanying paper, Turro et al. have 
obtained a-lactones in the reaction of triplet dioxygen with 
ketenes.2 In our present investigation of the ketene-ozone re­
action we confirm the results of earlier and subsequent work3 

and present evidence for intermediates in reaction 1. 

C=C=O + 0 , -+ R \ / \ > 

R 

- 0 — C -
I 
R 

The mechanism of a-lactone formation was not dealt with 
in the previous study.1'3 We now propose a pathway for this 
transformation which accounts for the products shown in eq 
1 as well as other rearrangement products.4 To separate the 
ozone reaction from the triplet dioxygen-ketene reaction we 
absorbed the ozone on silica gel and released it therefrom.5'6 

The central point in devising a mechanism for the reaction of 
ketenes with ozone is whether (a) ketene + O3 -*• a-lactone 
+ O2 or (b) ketene + O3 —*• an oxidizing agent -* (ketene) 
a-lactone + other products derived from the oxidizing agent. 
If route a prevails a 100% yield of a-lactone is theoretically 
possible, while route b leads to a maximum yield of 50% of 
a-lactone because 1 equiv of ketene is consumed in generating 
the oxidizing agent (assuming the oxidizing agent cannot de­
compose unimolecularly to either a-lactone or ketene). Routes 
a and b may be exemplified by the expressions in Scheme I. 

Route a resembles the suggested pathway for epoxide for-
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Table I. Ozonation of Ketene" 

entry ketene solvent coreactant polyester, % ketone, % coproduct, % 

I (CH3CEh)2C=C=O 
II (CH3CH2)2C=C=0 

III (CH3CHj)2C=C=O 
IV (C6Hs)2C=C=O 
V (C 6H 5) 2C=C=0 

VI (C6Hj)2C=C=O 
VII (C6Hs)2C=C=O 

VIII ( /^-C 4H 9J 2C=C=O 

EtOAc 
EtOAc 
Freon II 
Freon II 
EtOAc 
EtOAc 
EtOAc 
Freon II 

TCNE^ 

TCNE 
propionaldehyde^ 

43 
6 

40 
67 
52 
18 
5 

91* 

57* 
80 
55 
30e 

49 
75 
78 
2 

40<* 

19d 

a Ozonations were run at -78 0C until they were saturated as indicated by blue solution. The reaction time varied from 10 to 30 min. * Diethyl 
ketone was separated by distillation. c TCNE was 0.01 mol. No reaction between TCNE and the ketene occurred although a coloration of 
the solution was observed. d Determined by titration26 and the oxide was separated from the polymer by sublimation. TCNE does not react 
with ozone under the conditions of the experiment. See also ref 19. e Separated by chromatography. / Fourfold excess. « As reported in ref 
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4-A = primary ozonide 

B = peroxy diradical (NC)2C'—C(CN)2 

C = ring closed dioxirane 

D = product of addition of C to yield 1,5-diradical 

E = product of addition of C to yield 1,5-diradical 

mation in the case of hindered olefins.7-10 Route b is similar 
to the proposed mechanism for ozonation of carbon-carbon 
double bonds.""13 The primary ozonide intermediate cleaves 
to yield the Criegee intermediate and CO2 as the carbonyl 
fragment. The Criegee intermediate may then transfer oxygen 
to a ketene molecule yielding the a-lactone and the derived 
ketone.'4 Ozone itself may be a singlet biradical as suggested 
by recent calculations15 and the formation of the trioxalone 
may be concerted.16 

Reference to Table I indicates that, at least from a stoi­
chiometric viewpoint, both pathways appear to occur. Di-
?er?-butylketene (entry VIII) yields 91% polyester and <2% 
ketone. Thus a direct transfer of an oxygen atom from ozone 
apparently occurs. Whether 1O2 plays a role in this reaction 
remains to be established. The reaction of ketenes with 1Ch 
yields peroxylactones.17 

Diethylketene (entry I) may follow route b upon ozonation. 
There is an approximate equivalence between the yields of 
polyester and ketone. Tetracyanoethylene (TCNE) suppresses 
polyester formation (entry II) to 6%, while the ketone yield is 
concomitantly increased to 80%, presumably owing to greater 
reactivity of the oxidizing agent toward the coreactant vs. the 
ketene. Furthermore, TCNE oxide is obtained in 40% yield.18 

We interpret these results in terms of interception of the 

Criegee intermediate, either B or C, (C2Hs)2CO2 , by TCNE 
(Scheme II). 

We chose to represent the Criegee intermediate (C2Hs)2-
CO2 as initially a 1,3 diradical (B) which converts to the 
dioxirane (C) and reacts as a 1,3-singlet diradical. This rep­
resentation is supported by calculation15 and recent observa­
tions on CH2O2 .2 0 

As far as the mechanism of a-lactone formation is con­
cerned, the essence of our proposal is that (CH3CH2)ICO2 is 
the oxygen transfer agent which converts the ketene into the 
a-lactone. It is interesting to note that this mechanism was 
anticipated by Eaton et al.21 The conversion of a ketene into 
a ketone by ozonolysis was a key step in the synthesis of the 
[2.2.2]propellane system. To obtain a high yield of ketone, 
however, propionaldehyde22 was required as a coreactant. This 
may be understood in terms of the R2CO2 species transferring 
an oxygen atom to propionaldehyde in preference to a-lactone 
formation and polymerization. In the present work we also 
observed the analogous effect with propionaldehyde (Table 
I, entry VII). Djerassi et al. have studied the reaction of al­
dehydes with O3 in basic media.24 

This mechanism also offers a rationale for some recent re­
sults on the ozonation of other ketenes. Brady and Saidi4 re­
ported that ozonation of trimethyl- and triethylsilylketenes 
proceed with rearrangement to yield the silylformates (eq 
2). 

R 3 S i - O ^ 

C = C = O 

R = C H , , CH,CH -31 ' - i i -5 •— n -, 

We would propose the pathway shown in Scheme III. 
Crandall et al. report that carboethoxy-/er/-butylketene 

upon ozonolysis yields ethyl /err-butyloxalate and the keto 
ester25 (Scheme IV). 

Entry VI shows an even stronger effect of TCNE upon the 
ozonation of diphenylketene. Ozonation of diphenylketene at 
—78 0 C in the absence of TCNE gives an immediate precipi­
tate of polyester although the lactone is stable at —100 0 C. 
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Scheme IV 
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Criegee19 on the deoxygenation of intermediates in the ozonation of ole­
fins. 

(19) R. Criegee and P. GOnther, Chem. Ber., 96, 1564 (1963). 
(20) F. J. Lovas and R. D. Suenram, Chem. Phys. Lett., 51, 453 (1977). 
(21) P. E. Eaton and G. H. Temme III, J. Am. Chem. Soc., 95, 7508 (1973). 
(22) P. R. Story, J. A. Alford, J. R. Burgess, and W. C. Ray, J. Am. Chem. Soc, 

93,3042(1971). 
(23) Reference 4. These workers propose a basically different mechanism which 

involves a key step loss of carbon monoxide from an a-lactone. The gas-
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Oxygen transfer from (C6Hs)2C02 to diphenylketene can be 
readily diverted by TCNE or propionaldehyde. 

Finally returning to the case of di-rerf-butylketene (entry 
VIII) the question remains as to why a mechanism different 
from that observed in the ozonations of diphenylketene and 
diethylketene occurs. It may be that the initial ozonide is an 
open diradicaloid or zwitterionic intermediate due to the sta­
bilizing influence of two tert-buiy\ groups. Singlet diradical 
and zwitterionic character represent a continuum which is 
affected by substituents.27 Rearrangement of these species to 
a-lactones via a peroxy oxide may be favored.2 Also the di­
rer*-butyl groups may hinder trioxalone formation.28 (See 
Scheme V.) 

Acknowledgments. The authors thank Professor N . J . Turro, 
Columbia University, for stimulating discussions of this work, 
for sharing results, and agreeing to publish his study simulta­
neously with ours. We also thank the National Science 
Foundation for support of this work under Grant CHE-77-
06617. 

References and Notes 

(1) R. Wheland and P. D. Bartlett, J. Am. Chem. Soc, 92, 6057 (1970). 
(2) N. J. Turro, M.-F. Chow, and Y. ItO, J. Am. Chem. Soc, preceding paper 

in this issue. 
(3) J. K. Crandall, S. A. Sojka, and J. B. Komin, J. Org. Chem., 39, 2172 

(1974). 
(4) W. T. Brady and K. Saidi, Tetrahedron Lett., 721 (1978). 
(5) G. A. Cook, A. D. Kiffer, C. V. Klumpp, A. H. Malik, and L. A. Spence, Adv. 

Chem. Ser., No. 21,44(1959). 
(6) P. S. Bailey and A. M. Reader, Chem. Ind. {London), 1063 (1961). 
(7) P. S. Bailey and A. G. Lane, J. Am. Chem. Soc, 89, 4473 (1967). 
(8) P. S. Bailey, Chem. Rev., 58, 925 (1958), and references therein. 
(9) P. D. Bartlett and M. Stiles, J. Am. Chem. Soc, 77, 2806 (1955). 

(10) R. C. Fuson, M. D. Armstrong, W. E. Wallace, and J. W. Kneisley, J. Am. 
Chem. Soc. 66, 1274 (1944). 

(11) R. Criegee, Rec Chem. Prog., 18, 11 (1957). 
(12) L. A. Hull, I. C. Hisatsune, and J. Heicklen, J. Am. Chem. Soc, 94, 4856 

(1972), and references cited therein. 
(13) R. W. Murray and A. Suzui, J. Am. Chem. Soc, 95, 3343 (1973). 
(14) Alternatively the primary ozonide could cleave to yield R2CO and CO3. We 

prefer R2CO2 to CO3 as the oxygen atom donor because of variations in 
the overall reaction as a function of differences in the nature of R (Table 
I). Were CO3 the common oxidizing agent, a greater uniformity in the yield 
of ketone would be expected, 

(15) W. R. Wadt and W. A. Goddard III, J. Am. Chem. Soc, 97, 3004 (1975). 
(16) R. Huisgen, J. Org. Chem., 41, 403 (1976), and the discussion therein. 
(17) N. J. Turro, Y. Ito, M.-F. Chow, W. Adam, O. Rodriquez, and F. Yany, J. Am. 

Chem. Soc, 99, 5836 (1977). 
(18) This experiment was suggested by the classical work of GUnther and 

eous product CO vs. CO2 was not reported. In a footnote they recognize 
that R3Si+CH-O-O - could also yield the silylformate. 

(24) P. Sundararaman, E. C. Walker, and C. Djerassi, Tetrahedron Lett., 1627 
(1978). 

(25) Reference 3. These workers mention the dioxirane as a possible Inter­
mediate. 

(26) W. J. Linn, O. W. Webster, and R. E. Benson, J. Am. Chem. Soc, 87, 3651 
(1965). 

(27) L. Salem and C. Rowland, Angew. Chem., Int. Ed. Engl., 11, 92 (1972). 
(28) We thank a reviewer for this suggestion. 

R. M. Moriarty,* Kenneth B. White, A. Chin 
Department of Chemistry, University of Illinois 

at Chicago Circle, Chicago, Illinois 60680 
Received May 20, 1978 

Photoelectron Spectra of the Ozonides of Ethylene, 
Cyclopentene, and Cyclohexene. Experimental 
Evidence for the Magnitude of the "Pure" 
Inductive Effect of an Ether Oxygen on 
Ionization Energy 

Sir: 

While ozonides have been used as valuable synthetic inter­
mediates for some time, relatively little structural information 
is available about them except in the case of ethylene ozonide 
( la ) , l a propylene ozonide ( lb) , l b and rra«5-2-butene ozonide 
( Ic ) . l b 

VV 

b R = H; R' = CH3 

c R = R' = CH3 ( c i s and t r a n s ) 

As part of our continuing effort2 to determine the effects of 
remote substituents on ionization energies (IP), we have pre­
pared and determined the photoelectron spectra (PES) of the 
ozonides of ethylene (la),3 cyclopentene (2),4 and cyclohexene 
(3).5 From microwave data 1 exists in the gas phase in a half-
chair conformation having Cj symmetry.1 Importantly, 
however, the symmetry characteristics of the component 
oxygen orbitals of la offer a unique opportunity to assess the 
inductive effects of the peroxide and ether oxygens on each 
other in the absence of interferring conjugative effects. 

From an analysis of the PES of tetrahydrofuran (n0 = 9.47 
eV),6 cyclopentene (IT = 9.18 eV),7 and 2,5-dihydrofuran (4) 

(n0 = 10.59 eV, ir = 9.14 eV),6 Bain et al.6 concluded that, in 
the latter compound, the inductive stabilization of the x bond 
by the electronegative allylic oxygen (assumed to be 0.8 eV) 
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